
UC Berkeley

The	RISC-V	Berkeley	Out-of-Order	Machine:		
An	update	on	BOOM	and	the	wider	ecosystem	

(Chisel,	FIRRTL,	&	Rocket-chip)
Christopher	Celio	

ORCONF	
2016	October

celio@eecs.berkeley.edu

http://ucb-bar.github.io/riscv-boom

UC Berkeley

An	Update	on	the	Berkeley	
Architecture	Research	Infrastructure	

(Oh,	and	BOOM	is	cool	too.)
Christopher	Celio	

ORCONF	
2016	October

celio@eecs.berkeley.edu

http://ucb-bar.github.io/riscv-boom

UC Berkeley What	is	BOOM?
◾ superscalar,	out-of-order	RISC-V	processor	wriGen	
in	Berkeley’s	Chisel	hardware	construcIon	
language	(HCL)	

◾ It	is	synthesizable	
◾ It	is	parameterizable	
◾ it	is	open-source

3

RegFile

ICache

Uncore

LSU

Rename
Table

FPU

ROB

Free List

Issue
Window

Branch
PredictorALUs

Fetch
Buffer

DCache

DCache
Control

IDIVIMUL Busy
Table

Bypasses

2-wide BOOM (16kB/16kB) 1.2mm2 @ 45nm

Fetch

Decode &
Rename

Issue
Window

Physical
Register
File (5x3)

(PRF)

ALU

ROB

Commit
wakeup

uop tags

inst

2

2

2

2

2

FPU
ALU LSU

Data
cache

UC Berkeley How	do	you	make	an	OoO	processor?

◾ Start	with	a	new	hardware	construcIon	language	
- Verilog	is	awful	and	will	just	get	in	the	way.	

◾ Start	with	a	working	processor.	
-Way	easier	than	wriIng	everything	from	scratch!	
- PTWs,	FPUs,	uncore,	devices,	off-chip	IOs	are	unglamorous.

4

UC Berkeley It	takes	a	village.

◾ RISC-V	ISA	
- very	out-of-order	friendly!	

◾ Chisel	hardware	construcIon	language	
- object-oriented,	funcIonal	programming	

◾ FIRRTL	(brand	new!)	
- exposed	RTL	intermediate	representaIon	(IR)	

◾ Rocket-chip	
- A	full	working	SoC	plaVorm	built	around	the	Rocket	in-order	core	

◾ Thanks	to:	
- Krste	Asanović,	Rimas	Avizienis,	Jonathan	Bachrach,	ScoG	Beamer,	David	
Biancolin,	Christopher	Celio,	Henry	Cook,	Palmer	Dabbelt,	John	Hauser,	
Adam	Izraelevitz,	Sagar	Karandikar,	Ben	Keller,	Donggyu	Kim,	Jack	
Koenig,	Jim	Lawson,	Yunsup	Lee,	Richard	Lin,	Eric	Love,	MarIn	Maas,	
Chick	Markley,	Albert	Magyar,	Howard	Mao,	Miquel	Moreto,	Quan	
Nguyen,	Albert	Ou,	David	A.	PaGerson,	Brian	Richards,	Colin	Schmidt,	
Wenyu	Tang,	Stephen	Twigg,	Huy	Vo,	Andrew	Waterman,	Angie	Wang,	
and	more...

5

UC Berkeley The	Rocket-Chip	SoC	Generator	Ecosystem

◾ BOOM	is	a	piece	of	the	Rocket-chip	ecosystem	
◾ Started	in	2011	
◾ taped	out	10	(12?)	Imes	by	Berkeley	
◾ runs	at	1.65	GHz	in	IBM	45nm	
◾MMU	supports	page-based	virtual	memory	
◾ IEEE	754-2008	compliant	FPU	

- supports	SP,	DP	FMA	with	hw	support	for	
subnormals	

◾ cache	coherent,	non-blocking	L1	data	cache,	
L2	cache,	and	more

6
https://github.com/ucb-bar/rocket-chip

Rocket	5-stage	pipeline

https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-17.html

UC Berkeley BOOM	fits	into	Rocket-chip	SoC

7

BOOM

Rocket

Rocket

◾ The	devs	graduated!	
- started	SiFive	start-up	to	support	RISC-V,	rocket-chip	and	design	custom	
chips	around	them	

◾ work	in	progress	on	a	new	Rocket-chip	FoundaIon	
◾ new	generaIon	of	Berkeley	student	devs!	

- Berkeley	is	commiGed	to	open-source	Rocket-chip		
- (our	research	depends	on	it!)	

◾ 37	contributors	
- SiFive,	Berkeley,	LowRISC,	Boston	U.,	and	more

UC Berkeley Rocket-chip	Updates

8

the vision...

https://dev.sifive.com/documentation/freedom-u500-platform-guide/

Rocket-chip

UC Berkeley Rocket-chip	Updates
◾ commiGed	to	open-source	since	Oct	2011	

- 3588	commits!!!	
- 310	commits	last	four	weeks!	

◾BeGer	documentaIon	
- hGps://dev.sifive.com/documentaIon/u5-coreplex-series-manual/	

◾ removed	git	submodules	
- speed	up	development	(reduce	merge	headaches)	

◾ RISC-V	Privileged	Spec	v1.9	
◾uncached	loads/stores	(memory-mapped	IO)	
◾ RISC-V	External	Debug		

- breakpoints	
- stand-alone	boot!	
- non-standard	HTIF	(host/target	interface)	has	been	removed!	

◾ More	configuraIons	
- RV32	support	+	M/A/F	as	opIons	
- RISC-V	Compressed	ISA	support	
- blocking	data	cache	(MSHRs	=	0)	

◾ Updated	to	Chisel3	
- No	more	C++	backend,	only	Verilog	is	emiGed.		
- we	use	Verilator	in	the	build	system	for	free	and	fast	simulaIon.	

◾ And	a	lot	more...	
- Ilelink	updates,	mulI-clock	domains,	I/Os,	devices,	...		
- I'm	having	trouble	keeping	up! 9

UC Berkeley Chisel

◾ Hardware	ConstrucIon	Language	embedded	in	Scala	
◾ not	a	high-level	synthesis	language	
◾ hardware	module	is	a	data	structure	in	Scala	
◾ Full	power	of	Scala	for	wriIng	generators	

- object-oriented	programming	
- factory	objects,	traits,	overloading	

- funcIonal	programming	
- high-order	funs,	anonymous	funcs,	currying

10

Chisel Program

Scala/JVM

magic!

Verilator
Verilog

FPGA
Verilog

ASIC
Verilog

C++ Compiler/
Verilator FPGA Tools ASIC Tools

Verilator/Software
Simulator

FPGA
Emulation

GDS
Layout

UC Berkeley Chisel3	(frontend)	and	FIRRTL	(backend)
◾ Goal	

- turn	research-ware	into	a	quality	compiler	plaVorm		
- open	up	the	IR	for	hardware	designers	to	write	their	own	IR	
transform	passes	

◾ Chisel3	
- embedded	in	Scala	
- generates	FIRRTL	RTL	code	

◾ FIRRTL	(Flexible	IR	for	RTL)	
- serves	as	an	IR	for	hardware	(i.e.,	LLVM	for	hw!)	
- generates	Verilog	

◾ Success!	
- can	add	your	own	transformaIons	
- you	can	throw	away	Chisel	and	write	your	own	front-end	
- hGps://github.com/ucb-bar/chisel3	(alpha	version)	
- hGps://github.com/ucb-bar/firrtl	(alpha	version)	
- Spec:	hGps://github.com/ucb-bar/firrtl/tree/master/spec

11

UC Berkeley FIRRTL	IR	Passes

◾ Code	coverage	
- how	much	of	my	circuit	is	being	exercised?	

◾ Scan	chain	inserIon	
◾ SRAM		
- FPGAs	vs	ASIC	memories	
- re-sizing	(transforming	skinny/tall	to	rectangular)	

◾ early	staIsIc	gathering	(e.g.,	gate	count)	
- synthesis	tools	take	a	long	Ime...	

◾ Decoupling	target	Ime	from	host	Ime	
- e.g.,	adding	a	"stop-the-world"	buGon	

◾ asserIon	support	(TBA)	
- turning	simulator	asserIons	into	a	real	HW	asserIon

12

UC Berkeley New	&	Upcoming	Chisel	Features
◾ parameterized	Verilog	blackbox	support	
◾ Analog	types	

- represents	outside	wires	that	are	"not	digital"	
- e.g.,	connecIng	inout	I/Os	to	blackboxes	

◾mulI-clock	domain	support	
- fixed-raIo	has	first-class	ciIzen	support	
- you	provide	your	own	clock	domain	crossings*	
- e.g.,	async	FIFOs	

◾ *async	reset	
- TBD,	but	with	an	eye	towards	mulI-clock	support		

◾ DSP	support	
- FixedPoint	type	
- can	provide	value	ranges,	not	bit	widths	

◾ AnnotaIons	
- allow	FIRRTL	back-end	to	get	addiIonal	informaIon	from	Chisel

13

UC Berkeley Chisel2

◾ provides	compaIbility	warnings	to	help	migraIon	to	
Chisel3	

◾migraIon	documentaIon	is	available	
◾ End	of	life...?	
◾ if	you	use	Chisel2	and	depend	on	it	let	us	know!

14

UC Berkeley Ques[ons	on	BAR?

15

UC Berkeley What	is	BOOM?

◾ superscalar,	out-of-order	RISC-V	processor	wriGen	
in	Berkeley’s	Chisel	RTL	

◾ It	is	synthesizable	
◾ It	is	parameterizable	
◾ it	is	open-source	
◾ started	in	2012	
◾ 10k	lines	of	code	
◾ implements	RV64G

16

RegFile

ICache

Uncore

LSU

Rename
Table

FPU

ROB

Free List

Issue
Window

Branch
PredictorALUs

Fetch
Buffer

DCache

DCache
Control

IDIVIMUL Busy
Table

Bypasses

2-wide BOOM (16kB/16kB) 1.2mm2 @ 45nm

http://ucb-bar.github.io/riscv-boom

UC Berkeley BOOM

◾ PRF		
- explicit	renaming	
- holds	speculaIve	and	commiGed	data	
- holds	both	x-regs,	f-regs	

◾ Unified	Issue	Window	
- holds	all	instrucIons	

◾ split	ROB/issue	window	design 17

Fetch Decode &
Rename

Issue
Window Unified

Physical
Register

File
(PRF)

FPU

ALU

Rename Map Tables & Freelist

ROB

Commit

UC Berkeley Benefits	of	using	Chisel	&	Rocket-chip
◾ ~10,000	loc	in	BOOM	github	repo	
◾ +	addiIonal	~12,000	loc	instanIated	from	other	libraries	

- ~5,000	loc	from	Rocket	core	repository	
- 90	(integer	ALU)	
- 150	(unpipelined	mul/div)	
- 550	(floaIng	point	units)	
- 1,000	(non-blocking	datacache)	
- 300	(icache)	
- 300	(next	line	predictor/BTB/RAS)	
- 200	(decoder	minimizaIon	logic)	
- 200	(page-table	walker)	
- 200	(TLB)	
- 400	(control/status	register	file)	
- 300	(instrucIon	definiIons	+	constants)	

- ~4,500	loc	from	uncore	
- coherence	hubs,	L2	caches,	networks	

- ~2000	loc	from	hardfloat	
- floaIng	point	hard	units

18

UC Berkeley Parameterized	Superscalar

19

OR

val	exe_units	=	ArrayBuffer[ExecutionUnit]()	
exe_units	+=	Module(new	ALUExeUnit(is_branch_unit				=	true	
																																				,	has_fpu								=	true	
																																				,	has_mul								=	true	
))	
exe_units	+=	Module(new	ALUMemExeUnit(fp_mem_support	=	true	
																																				,	has_div								=	true	
))Issue

Select
Regfile
Writeback

dual-issue (5r,3w)

bypassing

ALU

div

LSUAgen D$

bypassing

ALU

FPU

bypass
network

Regfile
Read

imul

exe_units	+=	Module(new	ALUExeUnit(is_branch_unit	=	true))	
exe_units	+=	Module(new	ALUExeUnit(has_fpu	=	true	
																																	,	has_mul	=	true	
))	
exe_units	+=	Module(new	ALUExeUnit(has_div	=	true))	
exe_units	+=	Module(new	MemExeUnit())	

Issue
Select

Regfile
Writeback

Quad-issue (9r,4w)

ALU

div

LSUAgen D$

ALU

imul

FPU

ALU

bypassing

bypass
network

Regfile
Read

UC Berkeley ARM	Cortex-A9	vs.	RISC-V	BOOM

20

Category ARM Cortex-A9 RISC-V BOOM-2w

ISA 32-bit ARM v7 64-bit RISC-V v2
(RV64G)

Architecture 2 wide, 3+1 issue
Out-of-Order 8-stage

2 wide, 3 issue Out-
of-Order 6-stage

Performance 3.59 CoreMarks/MHz 4.61 CoreMarks/MHz

Process TSMC 40GPLUS TSMC 40GPLUS
Area with
32K caches 2.5 mm2 1.00 mm2

Area
efficiency

1.4 CoreMarks/MHz/
mm2

4.6 CoreMarks/MHz/
mm2

Frequency 1.4 GHz 1.5 GHz

Caveats:	A9	includes	NEON;		
BOOM	is	64-bit,	has	IEEE-2008	fused	mul-add	

UC Berkeley BOOM	Updates
◾ open	sourced	in	Jan	2016	
- hGp://ucb-bar.github.io/riscv-boom/	

◾ ~60	page	BOOM	Design	SpecificaIon	
- hGps://ccelio.github.io/riscv-boom-doc/	

◾ used	for	case	study	in	ISCA	2016	paper	(strober.org)	
◾ first	external	contribuIon	(visualizer)	
◾ ported	to	Chisel3/FIRRTL	
◾ supports	uncached	loads,	stores	(allows	for	memory-
mapped	IO)	

◾ updated	to	Privilege	Spec	v1.9	
◾ supports	RISC-V	External	Debug	Spec	
◾ added	High	Performance	Monitor	counters	(HPM)	
◾ branch	predictor	improvements	
◾ beginning	tape-out 21

UC Berkeley Zynq	FPGA	Repository

◾ BOOM	runs	on	a	Xilinx	Zynq	zc706	
◾ hGps://github.com/ucb-bar/fpga-zynq	
◾Updated	to	handle	latest	Privileged	Spec	v1.9,	External	
Debug	spec,	self-booIng	

◾was	"tethered"	via	the	Debug	Transport	Module,	but...	
◾ ...	just	finished	up	a	"Tether	Serial	Interface"	update

22

UC Berkeley Visualiza[on

◾ Above	shows:	
- SD-to-LBU	hazard	in	dhrystone	
- instrucIons	dependent	on	LBU	wait	for	LBU	to	execute	
- instrucIons	not-dependent	issue	out-of-order,	before	LBU	executes

23

UC Berkeley I	accept	contribu[ons!

◾ Visualizer	is	BOOM's	first	external	contribuIon	
◾ Happy	to	accept	more!	
- code	that	crashes	
- fixes	to	code	that	crashes	
- performance	analysis	tools	
- debugging	or	visualizaIon	tools	
- performance	improvements	
- new	features

24

UC Berkeley Branch	Predictors

25

Fetch Decode &
Rename

Issue
Window

Unified
Physical
Register

File

Functional Unit

0x100:%add%r1,%r2,%r3
0x104:%add%r3,%r0,%r4
0x108:%lw%%r2%0(r3)
0x10c:%beq%r1,%r2,%0x200

Instructions

0x110:%ld%%r2,%0(r1)
0x114:%ld%%r3,%4(r1)
0x118:%ld%%r4,%8(r1)
0x11c:%ld%%r5,%12(r1)
0x120:%...

0x200:%add%r1,%r2,%r3
0x204:%add%r3,%r2,%r1
0x208:%sw%%r1,%9(r1)
0x20c:%sw%%r3,%0(r1)
...

?

UC Berkeley GShare	Predictor

◾ global	history	
- track	outcome	of	last	N	branches	

◾ 2-bit	saturaIng	counter	table

26

1 1
1 0
0 1
0 0

predict
taken

predict
not taken

110110

global history

inst address
0x1000

hash

11

0 1

predict taken?

hysteresis

UC Berkeley BOOM's	Branch	Predic[on

◾ next-line	predictor	(NLP)	
- BTB,	BHT,	RAS	
- combinaIonal	

◾ backing	predictor	(BPD)	
- global	history	predictor	
- SRAM	(1	r/w	port)

27

Branch
Prediction

I$

Fetch
Buffer

Fetch1

 μDec
PC1

Fetch2

NLP

ExeBrTarget

NPC

Front-end

BPD

PC2

Front-end

TakePC

BHT
Target >>

UC Berkeley GShare	Predictor	-	Fieng	it	in	SRAM

◾ change	"2-bit	counter"	state	machine	
- on	mispredicIon,	jump	from	weak	to	strong	
- 00	->	01	->	11	

- this	will	allow	us	to	reduce	the	read/write	requirements	
- described	in	Hennessy	&	PaGerson	computer	architecture	
textbook

28

1 1
1 0
0 1
0 0

predict
taken

predict
not taken

https://www.google.com/search?client=safari&rls=en&q=David+Patterson&stick=H4sIAAAAAAAAAOPgE-LSz9U3MKnKKK7KVeIEsY1TyrJKtGSyk630k_Lzs_XLizJLSlLz4svzi7KtEktLMvKLAOMKKJU3AAAA&sa=X&ved=0ahUKEwj99-i0gtbPAhVCi1QKHQiECv0QmxMIjAEoATAQ

UC Berkeley GShare	Predictor	-	Fieng	it	in	SRAM

◾ p-bit	(predicIon)	
- read	every	cycle	
- write	on	mispredict	(value	of	h-bit)	

◾h-bit	(hysteresis)	
- write	every	branch	
- read	on	mispredict

29

1 1
1 0
0 1
0 0

predict
taken

predict
not taken

110110

global history

inst address
0x1000

hash

11

0 1

predict taken?

hysteresis

UC Berkeley GShare	in	single-ported	SRAM

- delayed	ghistory	update	
- super-scalar	predicIons	
- ghistory	is	fetch	packet	granularity	
- banked	p-table	
- reset	ghistory	on	misspeculaIons	
- update	during	commit 30

npc

hash

paddr

NPC (BP0)

uDec

predictions

BTB

valid
mask
insts

IC-Access (BP1) IC-Resp (BP2)

FetchBuffer

I$

p-table

ghistory

w
predict

h-tablebr_unit_pc
+ ghistory

S1 S2

write-buffer

h_out

addr

data

holds both rename-table
snapshots, and bpd

snapshot information that
can be released once a

branch is resolved.

npc

hash

paddr

NPC (BP0)

uDec

predictions

BTB

valid
mask
insts

IC-Access (BP1) IC-Resp (BP2)

FetchBuffer

I$

ghistory

w
predict

S1
S2

global history register
* update at end of BP1 stage
 - it contains the branch prediction history
 of the fetch unit (including BTB
 decisions)
 - compresses entire fetch-packet decision
 - only includes branches, not JAL/JALRs
* reset on fetch unit redirect (misprediction)
 - new prediction must use the new history

prediction
tables

addr

data

allocate
resources

B-ROB

Commit,
update predictor

branch
snapshots

B-ROB holds all inflight branches,
and can bypass updates that haven't

been committed to incoming
predictions.

imem

req

pred_resp
(1 per packet)

predictions
(1 per inst)ras_update

predictor pipeline

br_unit

update

ROB

kill

predictor

Decode/Rename/Dispatch

req_pc

resp

predictor (base)

ghist

brUnitResp

commit

UC Berkeley

Abstract	Branch	Predictors

31

UC Berkeley BOOM's	Branch	Predictors
◾ Null	

- predicts	not-taken	
◾ Random	

- serves	as	the	baseline	worst-case	predictor	
- useful	for	tesIng	the	pipeline	

◾ Simple	Gshare	
- demonstrates	how	to	interface	with	the	branch	predictor	framework	
- not	synthesizable	

◾ GShare		
- targeIng	1r/1w	SRAM	(dualported)...	
- ...	or	1rw	SRAM	(banked)	

◾ 2bc-GSkew	
- based	on	the	EV8	(Alpha	21464)	predictor	
- 1rw	(or	1r/1w)	SRAM	
- took	12	hours	to	implement	

◾ TAGE	
- a	super	awesome	predictor	
- sIll	in	prototyping;	WIP	to	make	it	synthesizable	and	scalable

32

UC Berkeley Thank	you!

◾ Source	
- hGps://ucb-bar.github.io/riscv-boom	

◾ DocumentaIon	
- hGps://ccelio.github.io/riscv-boom-doc	

◾ Google	group	
- hGps://groups.google.com/forum/#!forum/riscv-boom	

◾ Tech	Report	
- hGps://www.eecs.berkeley.edu/Pubs/TechRpts/2015/EECS-2015-167.html	

◾ TwiGer	
- hGps://twiGer.com/boom_cpu

33

UC Berkeley Funding	Acknowledgements

34

◾ Research	par*ally	funded	by	DARPA	Award	Number	HR0011-12-2-0016,	the	Center	for	Future	
Architecture	Research,	a	member	of	STARnet,	a	Semiconductor	Research	Corpora*on	program	
sponsored	by	MARCO	and	DARPA,	and	ASPIRE	Lab	industrial	sponsors	and	affiliates	Intel,	
Google,	Huawei,	Nokia,	NVIDIA,	Oracle,	and	Samsung.		

◾ Approved	for	public	release;	distribu*on	is	unlimited.	The	content	of	this	presenta*on	does	not	
necessarily	reflect	the	posi*on	or	the	policy	of	the	US	government	and	no	official	endorsement	
should	be	inferred.	

◾ Any	opinions,	findings,	conclusions,	or	recommenda*ons	in	this	paper	are	solely	those	of	the	
authors	and	does	not	necessarily	reflect	the	posi*on	or	the	policy	of	the	sponsors.	

