

RISC-V Instruction Set Architecture Update

Christopher Celio, Rick O'Conner ORCONF 2016 October celio@eecs.berkeley.edu rickoco@riscv.org

http://www.riscv.org

RISC-V ISA Updates

- Leaving UC Berkeley
- ISA Extensions
- Memory Model
- Compressed Extension
- Vector Extension
- Privileged Spec v1.9
- External Debug Spec
- High Performance Monitor (HPM) counters
- Future Progress
- Ecosystem Updates

RISC-V Timeline

- In summer of 2010, UC Berkeley started "3-month project" to develop their own clean-slate ISA
- May 2014, frozen user-level spec (IMAFDQ)
- August 2015, non-profit RISC-V Foundation created

Transitioning RISC-V Out of UC Berkeley

RISC-V Foundation is taking over standards process

- Incorporated Aug 2015
- Board of Directors formed Summer 2016
- Tools are starting the upstreaming process
- Students graduating
 - Lead RISC-V devs no longer at UCB
 - new start-up called SiFive
 - But many new students (github.com/ucb-bar)

Foundation Mission Statement

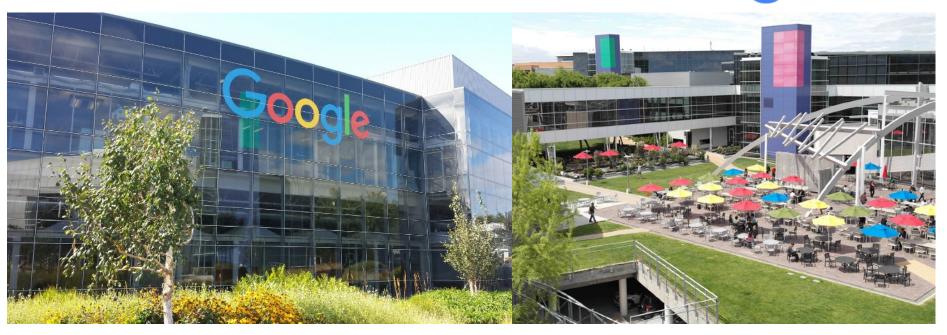
The RISC-V Foundation is a non-profit consortium chartered to standardize, protect, and promote the free and open RISC-V instruction set architecture together with its hardware and software ecosystem for use in all computing devices.

RISC-V Foundation Board of Directors

- Krste Asanović, Chairman
 - Professor in the EECS Department at UC Berkeley
- Zvonimir Bandić
 - Senior Director of Next Generation Platform Technologies at Western Digital Corporation
- Charlie Hauck
 - CEO of Bluespec Inc.
- David Patterson
 - Retired Professor Computer Science UC Berkeley
- Jothy Rosenberg
 - Associate Director of the cyber security group at Draper Laboratories
- Frans Sijstermans
 - Vice President Engineering at NVIDIA
- Ted Speers
 - Technical Fellow, Head of Product Architecture for Microsemi's SoC Group

Bi-annual Workshops

- 1st RISC-V workshop Jan 14-15, 2015 in Monterey, CA
 - Sold out: 144 (33 companies & 14 universities)
 - Slides & videos can be found here
- 2nd RISC-V workshop Jun 29-30, 2015 at UC Berkeley
 - Sold out: 120 (30 companies & 20 universities)
 - Slides & videos can be found here
- 3rd RISC-V workshop Jan 5-6, 2016 at Oracle Redwood City, CA
 - Sold out: 157 (42 companies & 26 universities)
 - Slides & videos can be found here
- 4th RISC-V workshop Jul 12-13, at MIT Cambridge, MA
 - Sold out: 252 (63 companies & 42 universities)
 - <u>Slides & videos can be found here</u>


• 252 attendees from 63 companies and 42 universities

5th RISC-V Workshop – Save the Date

Google

Nov 29th – 30th, 2016 Google Mountain View, CA

Foundation Status

Articles of Incorporation filed August 2015

- RISC-V Foundation Corporation is a legal, nonprofit operating entity
- Signed on 40+ Founding members
 - shaped the initial by-laws and membership agreements
- Board of Directors formed in Q2 of 2016
 - Ratify Membership Agreement
 - Ratify set of Bylaws
- This is just the beginning of RISC-V...

RISC-V Extensions

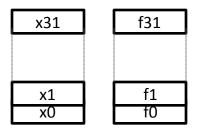
- None ratified by foundation.
 - But no changes are expected.
- 2.0 means "frozen".
- 1.9 means "almost finished".
 - Aka: "speak now or forever hold your peace."

Base	Version	Frozen?
RV32I	2.0	Y
RV32E	1.9	Ν
RV64I	2.0	Y
RV128I	1.7	Ν
Extension	Version	Frozen?
Μ	2.0	Y
A	2.0	Y
\mathbf{F}	2.0	Y
D	2.0	Y
Q	2.0	Y
\mathbf{L}	0.0	Ν
C	1.9	Ν
V	0.1	Ν
В	0.0	Ν
Т	0.0	Ν
Р	0.1	Ν

- currently very relaxed
 - use fences to enforce desired ordering
- Work in progress to provide a formally verified MM
- Goal is to make implementing the C11/C++11 memory model easy
 - acquire/release on AMOs will match the C standard (but not quite sure how to specify this concisely and exactly)
- At a minimum:
 - we will enforce load-load ordering to the same address within a single thread

"C": Compressed Instruction Extension

- C extension adds 2 byte instructions
 - RVC => RVI decoder only ~700 gates (~2% of small core)
- 50%-60% instructions compress -> 25%-30% smaller
- Finished, but not yet frozen
- Read Andrew's PhD thesis!
 - "Design of the RISC-V ISA"
 - https://www2.eecs.berkeley.edu/Pubs/TechRpts/2016/EECS-2016-1.html

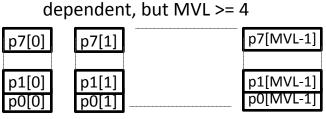

"V": RISC-V Standard Vector Extension

- To be discussed at next RISC-V workshop
 - not quite ready yet
- Efficient and scalable to all reasonable design points
 - Low-cost or high-performance
 - In-order, decoupled, or out-of-order microarchitectures
 - Integer, fixed-point, and/or floating-point data types
- Non-goal: Look like everyone's Packed-SIMD
- Non-goal: Look like a GPU
- Read Krste's Thesis:
 - "Vector microprocessors"
 - https://people.eecs.berkeley.edu/~krste/thesis.html

Proposed V Extension State

Standard RISC-V scalar x and f registers

Up to 32 vector data registers, v0-v31, of at least 4 elements each, with variable bits/element (8,16,32,64,128)


v31[0]	v31[1]	 v31[MVL-1]
v1[0]	v1[1]	 v1[MVL-1]
v0[0]	v0[1]	 v0[MVL-1]

MVL is maximum vector length, implementation and configuration

Vector configuration CSR

vcfg

8 vector predicate registers, with 1 bit per element

Reference Privileged Architecture

Application	Application	Application		Application	Application	Application	Application	
ABI	ABI	ABI		ABI	ABI	ABI	ABI	
AEE	0	OS		OS		OS		
	SI	SBI		SBI		SBI		
	SE	SEE			Hype	rvisor		
			·	HBI				
				HEE				

- not frozen, but many OS ports exist (Linux, FreeBSD, etc.)
- v1.7 in May 2015
- v1.9 in May 2016
 - riscv-tools, QEMU, Linux
- Getting close, but need more driver/OS development against it.
- hypervisor discussion is beginning
 - type 1 and type 2
- Need to define platform spec below.

RISC-V External Debug Specification

For debugging software (requires working hardware!)

- https://dev.sifive.com/documentation/risc-v-external-debug-support/
 Will be pushed back to RISC-V Foundation.
- Effectively an other privilege mode
- can reserve parts of the address space for MMIO for communicating with the core
- No more Berkeley non-standard HTIF (host/target interface) for tethered communications

External Debug: how does it work?

- Design goal:
 - simple, cheap debug support
- Debug Transport Module (DTM) writes to a debug RAM
- DTM interrupts the core
- core (now in D-privilege mode) jumps to and executes code in debug RAM
- maximum flexibility!
 - read/write a register
 - read/write memory
- Currently uses JTAG, but not tied to that

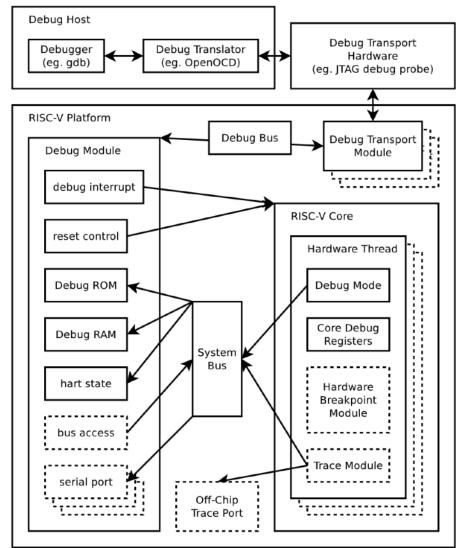


Figure 1: RISC-V Debug System Overview

High Performance Monitor (HPM) counters Goal

- provide access to micro-architectural events
- allow software to dynamically choose how to map many events onto a limited set of expensive hardware counters
- Support nearly infinite events
 - branch prediction, cache misses, instruction mixes, mem traffic, etc.
- Support up-to 29 physical hardware counters
 - 29 HPM counters
 - 29 event selectors
 - 3 counter enable registers for [h|s|u] privilege modes.
 - can specify which counters are available to which privilege modes
 - 3.1.16 Machine Counter-Enable Registers (m[h|s|u]counteren)

31	30	29	28	6	5	4	3	2	1	0
HPM31	HPM30	HPM29			HPM5	HPM4	HPM3	IR	TM	CY
1	1	1	23		1	1	1	1	1	1

 CPU designer chooses what events to have, and how many HPM counters to build.

Future Progress

 Berkeley and SiFive are producing incremental proposals to current user and privilege specs

 we will put those on arXiv

Foundation has its own working groups

- more to be announced at the RISC-V workshop

Software Progress

- binutils, gcc
 - "waiting on lawyers", but should be good to go!
- glibc/Linux
 - will upstream after binutils, etc.
- QEMU
 - ucb-bar/riscv-qemu now has user-mode and system-mode
 - currently upstreaming user-mode
- LLVM
 - upstreaming in progress (ask Alex Bradbury)
- Fedora disk images now available
- coreboot
 - "RISC-V is a first class citizen"
- UEFI
- FreeBSD

RISC-V Ecosystem www.riscv.org

Documentation

- User-Level ISA Spec
- Privileged ISA draft
- Compressed ISA draft
- External Debug draft

Software Tools

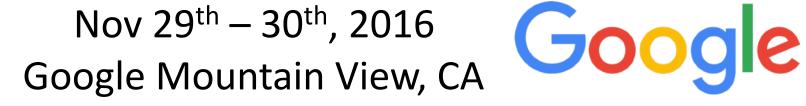
- GCC/glibc/GDB
- LLVM/Clang
- Verification Suite

Software

- Linux, FreeBSD
- Yocto
- Fedora disk images

Software Implementations

- QEMU
- Spike, In-house ISA Sim.
- ANGEL, JavaScript ISA Sim.


Hardware Implementations

- UCB Rocket Chip Generator
 - Rocket in-order core
 - BOOM out-of-order core
- External implementations
 - PicoRV32
 - Pulp Platform
 - mRISCV
 - and many many more...

RISC-V Summary

- Strong Industry Support
 - 40+ Founding Sponsors
 - Broad commercial and academic interest (252 workshop attendees representing 63 companies & 42 universities)
- Membership & Bylaw documents being ratified
- Board of Directors formed in Q2 2016
- 5th RISC-V Workshop save the date...

Backup Slides

Foundation Functions

- official source of information about RISC-V, maintains an online repository of RISC-V documents, and promotes adoption of RISC-V by organizing both online and live events
- responsible for sustaining, evolving and open-source licensing of the RISC-V instruction set architecture and surrounding hardware and software ecosystem over time in response to changes in technology and the needs and requests of the user community
- manages licensing of the RISC-V trademarks and provides a vehicle to decide whether a project or product can use the RISC-V trademark
- maintains a directory of public-domain instruction set architecture and micro-architectural techniques, culled from publications and expired patents
- produces and sells RISC-V promotional material, the proceeds from which are used to further the goals of the Foundation

Foundation Organization

- The Board of Directors consists of seven+ members, whose replacements are elected by the membership
- The Board is ultimately responsible for fulfilling the Mission Statement
- The Board can amend the By-Laws of the RISC-V foundation via a two-thirds affirmative vote
- The Board appoints chairs of ad-hoc committees to address issues concerning RISC-V, and has the final vote of approval of the recommendation of the ad-hoc committees.
- All members of committees must be members of the RISC-V Foundation
 - Committee chairs must report to the Board, and committees are subject to termination if the Board decides a committee is not making satisfactory progress
- Given the worldwide interest in RISC-V, the Board will appoint Chairs of Regional Committees to promote RISC-V development in local communities

Classes of Membership

- Platinum Sponsor dues of US\$25,000 per year
 - 10 complimentary registrations for RISC-V meetings during the year of membership and the most prominent and largest display of company logos in online and print materials for RISC-V
- Platinum members are eligible for Board seat elections and to Chair Foundation Technical Committees, Marketing Committees and Sub-Committees
- Gold Sponsor dues of US\$10,000 per year
 - 7 complimentary registrations for RISC-V meetings during the year of membership and prominent display of company logos in online and print materials for RISC-V
- Gold Sponsor members are eligible to Chair Foundation Technical Committees, Marketing Committees and Sub-Committees
- Silver Sponsor dues of US\$5,000 per year
 - 5 complimentary registrations for RISC-V meetings and for their logos to be displayed in RISC-V online and print materials
- All Sponsor organizations have one vote per open position in Board elections.
- Auditor dues of US\$2,500 per year (non-voting)
 - 2 complimentary registrations for RISC-V meetings during the year of membership and for their names to be listed in online and print materials for RISC-V
- Individual Member dues of US\$99 per year (non-voting)

What's Different about RISC-V?

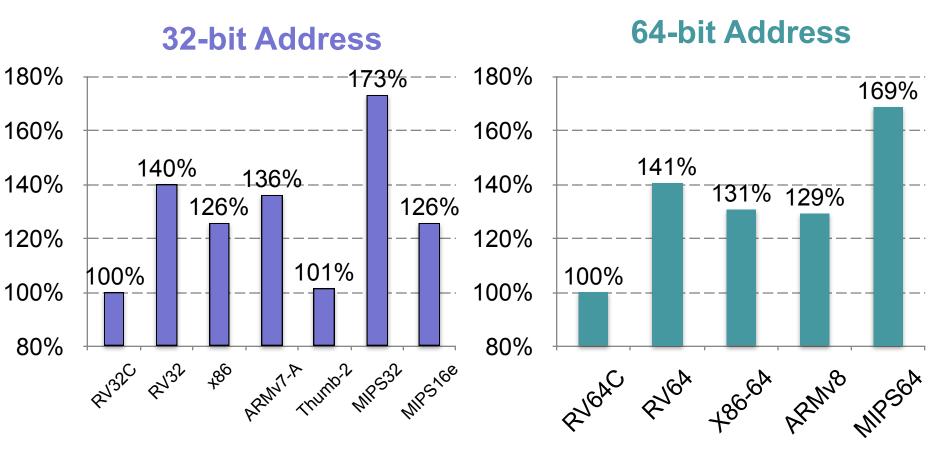
Simple

– Far smaller than other commercial ISAs

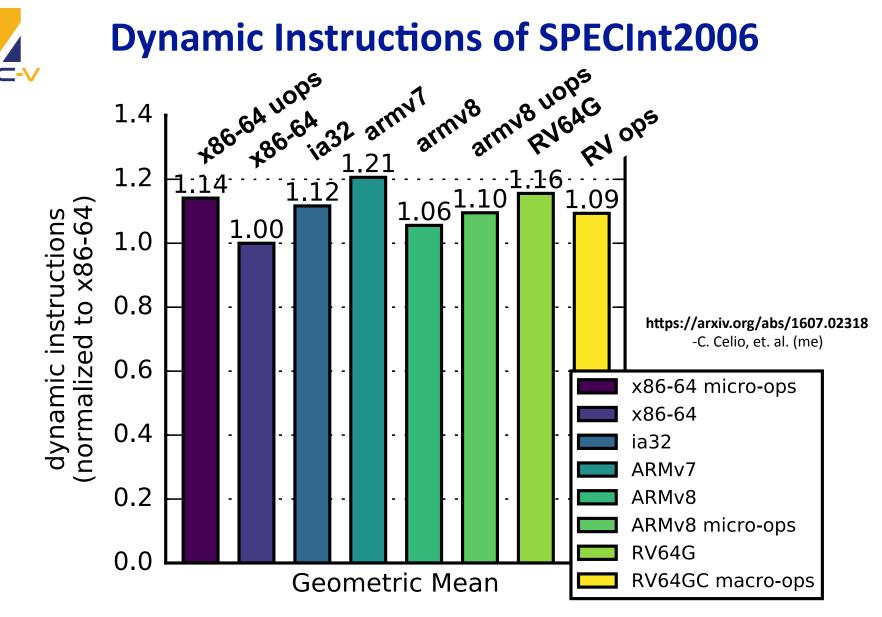
Clean-slate design

- Clear separation between user and privileged ISA
- Avoids µarchitecture or technology-dependent features

A modular ISA


- Small standard base ISA
- Multiple standard extensions
- Designed for extensibility/specialization
 - Variable-length instruction encoding
 - Vast opcode space available for instruction-set extensions

Stable


- Base and standard extensions are frozen
- Additions via optional extensions, not new versions

SPECint2006 compressed code size with save/restore optimization (relative to "standard" RVC)

RISC-V now smallest ISA for 32- and 64-bit addresses RISC-V Foundation

RV64GC+macro-op fusion executes same number of microops as ARMv8 micro-ops, x86 micro-ops