
Application development co-
design for FPGA-accelerated

data center HPC servers

Mihai Lazarescu
Luciano Lavagno

Outline

• CPU trends, energy efficiency
• Toolset objectives and approach
• OpenCL to FPGA: good!
• Toolset flow
• Preliminary results
• Wrap-up

CPU trends

• Uptrend: transistor count

• Capped:
– Power
– Frequency
– Perf./thread

• Efficient development flows?

Karl Rupp's

 GOPS/W
• CPU 1
• GP-GPU 3
• Accelerators

– Software 6
– FPGA 30

• Hardware IP >100
• Bio 1000

Improve silicon efficiency
[Ruch IBM 2011]

Toolset objectives and approach

• Get SW-like NRE costs with HW efficiency by:
– Integrating advanced HW High-Level Synthesis (HLS) tools in a

SW compilation flow for HW accelerators
– Accepting a variety of concurrent models for better learn time and

adoption by SW engineers
– Using HLS to reduce HW design time (mostly verification time)
– Improving Result Quality with manual and automated DSE

• Map SW on FPGA to:
– Reduce run-time energy consumption
– Reduce production cost (reusable components)

Why open source?

• OS builds community
– Foster the use and fruitful exchanges of ideas

• OS fosters Academy-Industry cooperation
– Both value creators, in synergistically complementary ways

• OS supports industry
– Lowers (SMEs) entry costs
– Creates jobs (also for students)

Multi-language input

• Problem: what high-level behavioral model for RTL synth?
– C, C++, SystemC, Simulink/Stateflow, CUDA, OpenCL are

successful to some extent, no definite winner
• Objective: don't learn a new language

– Faster and cheaper adoption by software engineers
– Development speed up by verification in domain-specific lang.

• Solution: C++/SystemC just as intermediate representation
Domain-specific model ►C++/SystemC ►HLS tools

OpenCL HLS to FPGAs

• Data centers: lots of energy for computing and cooling
• Many data center-typical algorithms embarrassingly parallel

(e.g., search, image and speech recognition)
– Already efficiently coded in parallel languages

• FPGA implementation vs. CPU/GP-GPU programs:
– Low energy
– Good performance
– Preserve HW reuse (reconfigurable by application)

• Preserve reusabiity
• Reduce dark silicon

Execution with FPGA accelerators

• FPGA: very high energy efficiency, dynamic reconfig.
• OpenCL: extreme parallelism, simple programming model
• Dynamic resource allocation: runtime FPGA reconfiguration
• Global memory: shared to all CPUs and FPGAs in cluster

– No global cache coherency (efficiency)

OpenCL programming model

• Kernels are functional computation units
– Mapped to CPU, GP-GPU or FPGA

• Kernels are split in independent workgroups
– Run-time mapped to resources (best resource/performance trade-off)

• Workgroups are made of synchronized workitems
– Share local memory (SRAM)

• Memory hierarchy:
– Global DRAM, shared by kernels and host code
– Local SRAM, shared by workitems (+ private registers)

• Code parallelization and optimized use of memory hierarchy
already solved by SW engineer

SDAccel optimization flow
S

pe
ed

-u
ps

10
0x

 ÷
 1

00
0x

S
pe

ed
-u

ps
2x

 ÷
 1

0x

OpenCL to FPGA

• Both Xilinx and Altera support OpenCL with:
– Workgroup replication, for best performance/resource trade-off
– Pipelined workitems, for efficient HW implementation
– Automate Design Space Exploration for:

• Loops within a workitem
• Local memory optimization

• Xilinx SDAccel
– OpenCL functional debugging
– Cost/performance analysis
– Manual Design Space Exploration

• Requires HW design expertise
• To automate

Open Source OpenCL kernels

• Sponsored by Xilinx via University grants
– To develop an OpenCL-based FPGA acceleration ecosystem

• Large library of Open Source OpenCL host and kernel code:
– Optimized for FPGA implementation
– Includes synthesis scripts

• Reference implementations for key areas:
– Machine learning (e.g., neural networks, k-nearest neighbors)
– Financial algorithms (e.g., Black Scholes, Heston)
– Graph algorithms (e.g., Floyd Warshall, Dijkstra)
– Database operations (e.g., sort, join)

Preliminary application examples

• Financial algorithms, e.g., Black-Scholes and Heston
– Monte Carlo parallel simulations: local memory, not global
– FPGA performance and energy much better than GP-GPU

• Machine learning, e.g., k-nearest neighbors
– Limited by global memory bandwidth (GP-GPUs are typically better)
– FPGAs use less energy and have better performance (if streaming)

• Sorting, e.g., bitonic sorting
– Limited by global memory bandwidth (GP-GPUs are typically better)
– FPGAs use less energy

Heston model of financial markets

• FPGA is competitive since global memory is not used

K-nearest neighbors

• FPGA best due to streaming & on-chip global memory

Summary

• OpenCL and FPGAs very promising for data center HPC
• Excellent energy efficiency, good performance
• May need FPGA-specific high-level optimization, e.g.

– Exploit global memory access bursts
• Encouraging results for different domain applications

– Easier DSE than for other (less embarrassingly parallel) models
– Dynamic resource management is key to data center and HPC use

ECOSCALE project: http://www.ecoscale.eu/

